Erratum on "Boundary Conditions for Scalar Conservation Laws, from a Kinetic Point of View"

A. Nouri, A. Omrane, and J. P. Vila

This note corrects a Gronwall argument in the proof of the uniform L^{∞} bound on $u_{\epsilon}(t,x):=\int f_{\epsilon}(t,x,v)\,dv$ given in ref. 2. The main result of the paper, i.e., Theorem 1, still holds and now even in an appropriate L^{∞} setting not requiring the earlier BV assumption of ref. 2. In the statement of Theorem 1, "Under some technical assumptions (of Proposition 4), the function u_{ϵ} converges in $L^{\infty}(0,T;L^1_{loc}(\Omega))$ to a function $u\in L^{\infty}(0,T;BV(\Omega))$..." should be replaced by "Under the assumption $|\{v\in\mathbb{R};a(v)\cdot\sigma=u\}|=0,\ \sigma\in S^{N-1},\ u\in\mathbb{R}$ and in the setting of Theorem 2, the function u_{ϵ} converges in $L^{\infty}(0,T;L^1_{loc}(\Omega))$ to a function $u\in L^{\infty}(0,T)\times\Omega$" Theorem 2 should be completed by the following.

Finally, under the assumption that f_0 and \tilde{f} are L^{∞} functions with $\|f_0\|_{L^{\infty}} \leq 1$, $\|\tilde{f}\|_{L^{\infty}} \leq 1$, $f_0(\cdot, v) \operatorname{sgn}(v) \geq 0$, $\tilde{f}(\cdot, v) \operatorname{sgn}(v) \geq 0$, and compact supports in v, u_{ϵ} is bounded in $L^{\infty}((0, T) \times \Omega)$ uniformly w.r.t. ϵ .

The following is a proof for $\Omega=]0,+\infty[$. In the proof of Theorem 2, a Banach fixed point argument in $L^{\infty}(0,T;L^{1}(\Omega\times\mathbb{R}))$ was performed for the map \mathscr{T} that maps f into F solution to $\partial_{t}F+a_{1}(v)\,\partial_{x}F=\frac{1}{\epsilon}\,(\chi_{u_{f}}-F)$ with the same initial and boundary data as in (10). Under the previous assumptions on f_{0} and \tilde{f} , there is a positive number M such that $\chi_{-M}(v)\leqslant f_{0}(x,v)\leqslant \chi_{M}(v)$ and $\chi_{-M}(v)\leqslant \tilde{f}(t,v)\leqslant \chi_{M}(v)$. Prove that if $\|u_{f}\|_{\infty}\leqslant M$ then $\|u_{\mathscr{T}(f)}\|_{\infty}\leqslant M$.

For $x - ta_1(v) > 0$,

$$F(t, x, v) = f_0(x - ta_1(v), v) e^{-\frac{t}{\epsilon}} + \int_0^t \frac{1}{\epsilon} e^{\frac{s-t}{\epsilon}} \chi_{u_f(s, x + (s-t)a_1(v))}(v) ds.$$

For $x - ta_1(v) < 0$,

$$F(t, x, v) = \tilde{f}\left(t - \frac{x}{a_1(v)}, v\right) e^{-\frac{x}{\epsilon a_1(v)}} + \int_{t - \frac{x}{a_1(v)}}^{t} \frac{1}{\epsilon} e^{\frac{s-t}{\epsilon}} \chi_{u_f(s, x + (s-t) \, a_1(v))}(v) \, ds.$$

1756 Erratum

And so,

$$\begin{split} \int F(t,x,v) \, dv &\leqslant e^{-\frac{t}{\epsilon}} \int_{a_1(v) < \frac{x}{t}} f_0(x - t a_1(v), v) \, dv \\ &+ \int_0^t \frac{1}{\epsilon} e^{\frac{s - t}{\epsilon}} \int_{a_1(v) < \frac{x}{t}} \chi_{u_f(s,x + (s - t) \, a_1(v))}(v) \, dv \, ds \\ &+ \int_{a_1(v) > \frac{x}{t}} \tilde{f} \left(t - \frac{x}{a_1(v)}, v \right) e^{-\frac{x}{\epsilon a_1(v)}} \, dv \\ &+ \int_{a_1(v) > \frac{x}{t}} \int_{t - \frac{x}{a_1(v)}}^t \frac{1}{\epsilon} e^{\frac{s - t}{\epsilon}} \chi_{u_f(s,x + (s - t) \, a_1(v))}(v) \, ds \, dv \\ &\leqslant e^{-\frac{t}{\epsilon}} \int_{a_1(v) < \frac{x}{t}} \chi_M(v) \, dv + (1 - e^{-\frac{t}{\epsilon}}) \int_{a_1(v) < \frac{x}{t}} \chi_M(v) \, dv \\ &+ \int_{a_1(v) > \frac{x}{t}} \chi_M(v) \, e^{-\frac{x}{\epsilon a_1(v)}} \, dv \\ &+ \int_{a_1(v) > \frac{x}{t}} \chi_M(v) (1 - e^{-\frac{x}{\epsilon a_1(v)}}) \, dv = M. \end{split}$$

Similarly, $\int F(t, x, v) dv \ge -M$.

Proposition 3(iii), Propositions 4 and 5 are skipped. The second and third lines of p. 795 no more follow from Proposition 5 but from the strong convergence in L^1 of f_{ϵ} to χ_u derived from now classical arguments. Indeed, (f_{ϵ}) being uniformly bounded in $L^1 \cap L^{\infty}$, converges (up to a subsequence) to some f in L^2 weak. By an averaging lemma (ref. 1, p. 23), u_{ϵ} converges strongly in L^1 to $u(t,x) := \int f(t,x,v) \, dv$. By the integral representation of f_{ϵ} , f_{ϵ} converges strongly in L^1 to χ_u (ref. 3, p. 81). The reference to Helly's theorem p. 795 should be skipped. The rest of the paper is unchanged.

REFERENCES

- 1. F. Bouchut, F. Golse, and M. Pulvirenti, *Kinetic Equations and Asymptotic Theory* (Gauthier-Villars, 2000).
- A. Nouri, A. Omrane, and J. P. Vila, Boundary conditions for scalar conservation laws from a kinetic point of view, J. Stat. Phys. 94:779–804 (1999).
- B. Perthame, Kinetic Formulations of Conservation Laws (Oxford University Press, Oxford, 2002).